
The quantity 

is investigated, where Lro(x) is a solution of (2.12). The following assertion holds: among 

all the surfaces S,,S2 bounding the domains G,,& of a given volume, and among all the equally 

measurable functions k(x), the minimum I(k(x),G,,G,) is reached in the case when G,,G, are 
concentric spheres, and the function k(s) is defined in a spherical layer G, \ G, which is 

spherically symmetric and does not decrease as the radius increases. 

The boundary value problem (2.12) is encountered, say, in problems of a steady-state 
temperature of diffusion distribution for non-uniform heat conduction or permeability, respect- 

ively,of the medium. The quantity I(k(x),G,,G,) characterizes the heat or mass flow through 

the surface S,. 

Mathematically, Theorem 4 generalizes the isoperimetric inequality for the electrostatic 

capacitance /l/ corresponding to the case k (x) = const. 
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SOLID PHASE SEEDS IN A DEFORMABLE MATERIAL* 

L.B. KUBLANOV and A.B. FREIDIN 

An equilibrium solid phase see in a linearly elastic medium is considered. 

The problem of a medium with new phase equilibrium domains is reduced to 
equations of elasticity theory for an inhomogeneous medium with a special 

kind of definite "phase" deformation under an additional phase equilibrium 

condition /I/ that imposes a constraint on the shape of the phase boundary. 

An ellipsoidal inclusion of an anisotropic phase is considered in an 
unbounded isotropic medium in a homogeneous external field of stress. It 

is proved that the tensor being defined by the phase deformation, by a 
change in the elastic moduli and stresses within the inclusion and having 

the meaning of a density tensor for dislocation moments indiced by a new 
phase domain, is global in the case of an equilibrium inclusion. The 
stress fields in an equilibrium two-phase configuration (TC) are determined 

by this characteristic property; the surface of the equilibrium ellipsoid 

turns out to be a surface of equal and constant principal values of the 

jump of the stress tensor and the constant principal value of the jump of 
the strain tensor. The stress perturbation tensor deviators within the 

*Prikl.Matem.Mekhan.,52,3,493-501,1988 
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seed and the tensor governing the ellipsoid shape are proportional, which 
is a generalization of a result obtained for seeds of a melt /2/. 

An equation governing the shape and orientation of the ellipsoidal 
seed as a function of the external stresses and the phase transition 
parameters follows from the structure of the density tensor of the dis- 
location moments. The possibility of the existence of an equilibrium 
ellipsoidal solid phase seed was shown in /3/ where analogous equations 
were obtained for the case of isotropic phases as a result of solving a 
TC problem by the method described in /4/; a system of equations is 
presented in /5/ for the analysis of TC with an anisotropic ellipsoidal 
seed. 

The conditions for the existence of equilibrium seeds and limit con- 
figurations analogous to the melt seed configurations are determined /2/. 

Energetic changes are considered for TC formation. It is shown that 
the Gibbs energies of the initial single-phase configuration and the 
equilibrium TC with an ellipsodial seed are equal: the equilibrium seed 
turns out to be critical. Seeds can originate only in the metastable 
phase: for stresses allowing the existence of an equilibrium ellipsoidal 
seed, the Gibbs specific energy of the initial single-phase configuration 
is not less than the specific Gibbs energy of a homogeneous configuration 
in the new phase state, where the equality of these energies is possible 
only for a TC containing layers. For stresses equal to the stresses within 
the equilibrium seed the new phase material has a larger specific Gibbs 
energy than the initial material. 

1. Two-phase configuration (TC) in the small strain approximation. Weconsider 
an unbounded medium in a homogeneous state of stress IS@, at a temperature 0 and being linearly 
elastic up to the time of the phase transition. We assume that a phase transition accompany- 
ing the "natural" deformation and a change in the elastic moduli occurs in a bounded domain 
V+.Additional displacement fields occur here and a stress field is formed that depends on the 
phase transition characteristics and the shape of the domain P. 

The problem of an equilibrium TC is to determine the shape of the domain V+ and the state 
of stress satisfying the equilibrium conditions /l/ that have t‘ne following form in the case 
of small strains: 

v-0 =o (1.1) 

[ul = 0, n.[al = 0, [I31 = 0 (1.2) 

p*III -u* * + [sl = 0 (e = def u) (1.3) 

and the condition at infinity 

5-+@0 as Ix/+=J 

Here (I is the Cauchy stress tensor, u is the displacement vector, II is the unit vector 
normal to the phase boundary, f is the specific free-energy density, the superscripts "minus" 
and "plus" denote the material of the initial and new phases, po is the material density in 
the initial state (the "minus" phase with no stresses at the temperature 8)tthe square brackets 
denote the change in the quantity during the passage from the "minus" to the "pius" phase, 
and x is a point of the body. 

Condition (1.1) is satisfied within the phase, and conditions (1.2) and (1.3) on the 
phase boundary; we neglect the influence of surface tension. It follows from the first con- 
dition in (1.2) that 

[Vu] = nh, h = n.[Vu] (1.4) 

The phase equilibrium condition (1.3) is written taking conditions (1.2) and relationships 
(1.4) into account. 

We assume that under given external conditions (U,o, 8) two single-phase homogeneously 
stressed configurations exist with strains so* from the initial state. We call these 
reference configurations. The possibility of their existence means that the equation of state 

poaj ((3, e)/as = cl (e, 0) (1.5) 

allows of the solution 

a&)-, 0)== u(e,+,0)= cl@ 

The specific Gibbs energies of the reference configurations 

g,*==f(e,*,e)- p;*'lo. *Is,* 
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cannot be equal to one another. For instance, for 

the reference configuration of the tlminus" phase is metastable. The natural strain te,1 
generally depends on the stress and temperature at which the phase transition occurs. 

The reference configuration concept in the phase transition problem was introduced dif- 

ferently in /4/ where it was assumed that both phases can exist in hydrostatically stressed 

states which were taken as references. The pressure and temperature selected ensured equality 

of the specific Gibbs energies of the phases; the external stresses and their corresponding 

temperature differed from the references. 

Assuming the natural strain [eO1 and the additional displacement fields w occurring in 
the TC to be small, we take a quadratic approximation of the free energy 

&f(E*, B)=p,f(E+, 0) + uo. .e+ +1/2ef. .C*. .ef 

e=defw, C* = (@//ae8e),+, o 
(1.7) 

According to (1.5), the following stresses act in the TC: 

o*=a,+c*..e* (1.8) 

Since 00 = Co--So, where C, = C- is the tensor of the elastic moduli in the initial 

state, the expression for the free energy and Eq.cl.8) can be written in the form 

fhfby e, = i 
pofo- + ‘jze * * c, * se, x z v* 
&for + ‘/,(E - $). .c+. ‘(E - gf), XEV (1.9) 

u (x) = (C, + c,v (x)) . *(e (x) - E’V (x)) 
Ef=[Eo]-B1**Uo=e,+-B+ “UO 
q=c+ -cc,, B+=(c’)-1, B,=C,l, B,-B+ - B, 

fo- = f, (O), f,' = f (eo+, 0) - 1/2a,. . B+ . -00 

(1.10) 

fiere fo- is the specific free-energy density in the initial state and V (x) is the 

characteristic function of the domain V+. The strain 8‘ is related to the reference configur- 

ations; this is the natural strain for a hypothetical transition from the initial state into 
a new unstressed phase state in which the material has the same properties as the reference 

configuration of the "plus" phase corresponding to the stresses oO; and fo+ is the free energy 
density in this hypothetical state. We note that the "plus" phase cannot exist in the 
unstressed state. 

In combination with conditions (1.1) and the first two conditions of (1.2), Eq.(l.lo) 

reduces the problem of determining the stress field in the given TC to a pxoblem of an 

inhomogeneous medium with domains having different moduli compared with the surrounding 
material; the occurrence of these domains is accompanied by the phase strain e'. The phase 

equilibrium condition (1.3) is a constraint on the shape of the domain p, 

Taking (1.21, (1.9) and (1.10) into account condition (1.3) can be written in the form 

y + ‘I2 (iul*-P+ - I&l. *Cr+ - o+.-8') = 0 (y = p0 IfJ) (1.11) 

The jumps in the strains and stresses on the boundary of the inclusion in a linearly 

elastic medium are associated with the stress field within the inclusion and the phase strains 

by the relationships /6/ 

IEI = K (n)..C,..m, Iu] = S (n)..m (1.12) 

(I< (n) = {n (n.C,.n)-‘n)F, s (n) = C,.*K (n)-.c, -C,) 

m = R,. . CJ+ + Ef = B, . . (a+ - a,) + [E,] (1.13) 

(s denotes symmetrization of the tetravalent tensor during permutation of the subscripts 
within pairs). It follows from (l.ll)-(1.13) that on the equilibrium boundary of the phases 

m..C,..K (n)..C,..m L e*+.C,..m + u+..e’- 2y (1.14) 

2. Equilibrium ellipsoidal inclusion. Since the stress field (7+ within a homo- 
geneous ellipsoidal inclusion in a homogeneous external field is homogeneous /7/, the tensor 
mand the right-hand side of (1.14) are constant on the phase boundary. Therefore, the shape 
of the equilibrium ellipsoidal seed should be such that the stresses within the ellipsoid 

ensure satisfaction of the following conditions on the boundary: 

K, = rn..C,. .K (n). .C,. .rn = const (n) (2.0 

Assertion. The stresses within an equilibrium ellipsoidal new phase seed in a linearly 



elastic isotropic medium are such that the tensor mis spherical: 

m = cE 

(E is the unit tensor and c isaparameter to be determined). 

Proof. For an isotropic medium 

C, = S,EE + 2@, K (n) = (anEn - bnnnn)' 

a = p,-l, b = (A, + yo)&o (LI + 2~0)1 

where h, and p0 are Lame coefficients and I is the unit tetravalent tensor 

(2.1) can be written in the form 

li,=a(n.q)a-b((n.q.n)Z=a qi2nis -b 
c 

qiqjninj = const (n) 

i, j 

(2.2) 

. Condition 

where pi are the principal values of the tensor q = co.. m and ni are projections of the 

(2.3) 

(2.4) 

normal on the principal directions q. 
The sufficiency of condition (2.2) for the satisfaction of (2.4) is obvious. 

The necessity follows, for instance, from the requirement to satisfy (2.4) at points of 

the ellipsoid at which the normal is parallel to the principal axes of the tensor q (where, 
respectively, ni2 = 1): (a - b) qi2 = const, from which 1 qI 1 = 1 qa 1 = 1 qa 1. Let qL = qa = -q3 = 4. Then 
K, = qa {a - b (1 - 2n,a)z) # const (n). Therefore, ql=qs==qs7 i.e., the tensors q and m are spherical. 

The stress and strain fields within the ellipsoidal inclusion are governed by the equations 

/6, 71 

a+ = u0 + C,..(Q -1).-m, E+ = 8, +32..rn (2.5) 

where g is the Eshelby tensor, which depends on the geometrical characteristics of the 

ellipsoid and the elastic moduli of the surrounding material. 

It follows from (1.13) and (2.5) that 

Substituting (2.2) 

equilibrium ellipsoidal 

(Cc’- .C, + a). .m = -B,,. .cr* (2.6) 

o* = B,-l. .[I+,] = u,, + B,-‘. .E? (2.7) 

into (2.6), we obtain an equation to determine the shape of the 

seed 

o = -c-‘B,. mu* + to* (2.8) 

W* z _3k$-1. .E = E + B,. .B,-1. .E (2.9) 

Here o = Q.-E is a tensor coaxial to the ellipsoid; its principal values are /7/ 

m 

(2.10) 

where Yg is Poisson's ratio of the "minus" phase, ai is the ellipsoid semi-axis, and k, is 

the volume compression modulus of the "minus" phase. Since tr Boa .u+ = Z,/(3k,) where I* = 

tra,, it follows from (2.7), (2.9) and (2.10) that 

c=-1,/Q, Q=3k,(x--ttrw,) (2.11) 

Condition (2.2) and its corollaries (2.8) and (2.11) are only the necessary conditions 

for phase equilibrium. 
Subsituting (2.2) and (2.3) into (1.14) and (2.5), we obtain an equation connecting the 

parameter c, the tensors w and u, and the phase transition parameters, from which it follows, 
by taking account of (2.8) and (2,11), that the equilibrium TC with a new phase ellipsoidal 

seed can exist in a homogeneous stress field if 

Z*2 = -2y,Q, vL = y + '1,~'. .B,-‘.a’ (2.12) 

By virtue of (2.12), the phase transition parameters should be such that Q and y* have 

different signs. It follows from (2.11) and (2.12) that 

c = -sign (QI*) v/z I tr / Q 1 (2.13) 

The second condition for the existence of an ellipsoidal seed (i is an arbitrary vector) 

i.(o, - c-‘B,. .o*).i > 6 (2.14) 

follows from the non-negative definiteness of the tensor 0. 



By virtue of relationships (1.12), (1.1x), (2.2) and (2.5) the state of stress 11. I! 
medium with an equilibrium ellipsoidal seed is such that: 

lo. The stress and strain perturbation tensors within the seed are coaxial tothe ellipsoid. 

The tensors w and E* -E,), and the deviators of the tensors o and the stress perturbations 

(the prime denotes the tensor deviator) are proportional 

0’ - 40 cc,,. (w - E). F- 

0’ (n+’ - uo’);(2p&) 

(relationships analogous to the first two are obtained 

solution for a melt seed /2/). 

2O. The surface of the equilibrium ellipsoid is a 

values of the jump in the stress tensor and a constant 

[al 2y,xc (nn - E). [el 

3O. The stresses and strains within the seed are 

parameters: 

r~+ m-z B,-1, . (& _ &) 

EL__ - (3k,cC,-'. .E + B,,. 

4O. On the ellipsoid surface 

u- 7 c {%p,,x (E - nn) + B-'..E} - B,-'..F' 

(the 

- FU -7 co (Z.1.)) 

in /5/, the third generalizes the 

surface of equal and constant principal 

value of the jump of the strain tensor 

= cxnn 

determined by the phase transition 

(2.16) 
B,m'..e') 

parameter c is determined by Eq.(2.13)). 

It follows from (2.8), (2.13) and (2.15) that the shape and orientation of the ellipsoid 

are governed by the tensor G* and the anisotropy of the new phase elastic moduli tensor 

(1)‘ aE' . + a*‘, ?;a,lI,, a = Q I (&Lo) ,(2.17) 

By virtue of condition (2.14) the domain of existence of the seed in the space of 

principal values & of the tensor E, ~the equilateral triangle in the deviator plane 

with vertices on the lines of intersection of the planes aEr = (a -x)/3 - i,- o,‘.i,, where 

i, are the principal directions of the tensor g. 

If the "plus" phase material is isotropic then o*' = 0,~ = as‘ is an ellipsoid coaxial 

to the tensor CJ+. (An analogous equation was obtained in another form in /3/). The ellipsoid 

is coaxial to the stress tensor at infinity if the tensors sf and (I,, are coaxial or IL+ = 0. 

It follows from (2.13) and the equality I, =trB,-'..I&,1 = -3 I6,l k+k,/k,, where, [fi0] = tr [e,], 

k+=k,+k,, that 

I, _ -sign ([6,1/k,) l/2 I y,Q 1 (2.19) 

Since Q = 3k, (x + 3k,Jk,), Y,, < I/*, ko,k+> 0, then k,Q> 0 and therefore 

1 



sign a = sign Q = sign k,, c = sign [6,1 1/2 1 v*/Q 1 
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(2.20) 

Condition (2.14) defines a triangle (figure) obtained when the plane (2.18) intersects 

the cube 

(a - x)i3 Q aEk < (a + 2x)/3. 

Ellipsoids of different shape correspond to different points of the triangle. 

We assume that k, > 0 (a > 0). For %1 = %2 = E3= '1, a spherical seed is the equilibrium 

seed. As %r increases, and for example, corresponding to the decrease %2 = Es, the seed 

transforms into an ellipsoid of revolution flattened in the direction i,; for the decrease 

51 < '1, the ellipsoid is elongated along the direction i,. The limit configurations,provided 

the volume is finite, are planes and infinite spikes. Such limit configurations were described 

for the melt seed /2/. The case k,<O can be considered analogously. 

If the material of the "plus" phase is transversely isotropic, while the tensor sf is 

axisymmetric (e' = ~11 + e2 (E - ll), where 1 is the direction of the isotropy axis, then 

o' = -{a,‘/(21.~,,c) + d (V3E - 11)} 

Y* = Y + ((h2 + h,) E12 + 2b,,e,2) 6-l 

Q = % (x - 3) - (h, + b,, + 2b,,) 6-l 

d = 2 ((L + b,, - b,, - b,,) c - (b,, + b,, + b,,) c, 
(2b + b,,) EZ) 6-‘, 6 = 2b,, (b,, + b2J - 4!1,,~’ 

1 I 
bkk=r-z. b,,=++ b _“_+ 

23 - 
k EO 

Here E, is Young's modulus of the "minus" phase, E, and E, are Young's moduli of the 

"plus" phase under tension along the axis and in the plane of isotropy, respectively, and Y, 

and v2 arePoisson's ratios of the "plus" phase characterizing the transverse compression along 

the isotropy axis and in the isotropy plane under tension in the isotropy plane, respectively. 

If the isotropy axis is directed along one of the principal directions of the tensor aO. then 

the ellipsoid is coaxial to so. 

3. Energy changes in TC formation. Analysis of the stability of equilibrium con- 

figurations does not arise in the problem of this paper. Some consequences of comparing the 

Gibbs energy of single- and two-phase configurations are examined below. The change in Gibbs 

energy 

of a body V bounded by a surface r when an inclusion V' arises isothermally from a new phase 

material under dead load conditions, can be represented in the form 

AG = \ (y* - ‘jzo*. . m) dl' 
ti+ 

(3.1) 

The first two conditions of (1.2), representations of the free energy (1.7) and (1.9) 

and the equality resulting from (1.10) and (1.13) u0 ..e" - w+..e,- = sO..m were used in deduc- 

ing (3.1). The work of the external forces in forming the inclusion under dead loading con- 
ditions 

A= lo,..mdV 
v+ 

is determined analogously. 

In the case of an ellipsoidal inclusion in a homogeneous field of stress 

AG = V+ (y* - '12a,..m) (3.2) 

A = V+o,,. .m (3.3) 

The equality of the Gibbs energy of the initial stage-phase configuration and the 

equilibrium TC with an ellipsoidal seed follows from (2.2), (2.11), (2.13), (2.16) and (3.2): 

AG = 0 (3.4) 

The work is here determined by the global part ofthe stress tensor associated with the 

phase-transition parameters 

A = -V+Q-‘I, tr e,, = V+ {2y, + sign '(Z*Q) tr B,-l. . 

e’1/2 I YJQ I ) 
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By virtue of (2.L9) and (2.20), for an isotropic seed 

X1 1. ($1, i- SiRI, @,I (X,k,/k,)1r~ I/Giu*;oJ] 

Taking (2.6) in to account it follows from (3.2) that 

r1AGidt" p* -- ':,n, .~R..n,, R = - (C,..C, -;- $8))i..R,, 

where R is determined by the shape of the inclusion. 
For i'.+;> VZ(r*..R..uU it is energetically preferable to reduce the volume and get rid 

of the non-equilibrium seed. Such seeds are subcritical. For y < '/$*..R. 'LJ* a non-equili- 
brium seed expands. The equilibrium confiyuration (2.17) satisfies condition (3.4) and is 
critical. The stresses within a solid phase seed depend on its shape outside the relation 
with the surface tension (see (2.5)); this dependence determines the critical seed configuration 
just as the pressure difference inside and outside a drop in gas-liquid phase transitions and 
the critical radius are determined by the surface tension on the phase boundary /8/. 

The difference (1.6) of the Gibbs specific energies of the single-phase configurations 
under stresses o, satisfying conditions for the existence of an equilibrium ellipsoidal seed 
can be written in the form 

zt‘ = ‘l,a,. . B,- ‘fl* - y* = 

‘/,ce {Q + (co - w.J..C,,.-B,..C,..(~ - o+)}= 
2~oec2 {(O-NE). .B,. .(o - xE) $ x/~~} = 
).# (2~~ (o - xE)..B+..(o - xE) -i_ (x2 - o..o)) 

Since o.*w < x2 then 

It)>21"02c2(~--xE)..B+.- (o - xE)> 0 

since Bf is a positive-definite tensor. Therefore, the occurrence of equilibrium ellipsoidal 

seeds is possible only when the initial single-phase configuration is metastable. 

The Gibbs energy of a TC with an ellipsoidal seed equals the energies of both single-phase 

configurations if 11 = 0. For c# 0 this is possible only for a limit configuration contain- 
ing a layer (a plane for a bounded seed volume) o =xnn under conditions of "plus" phase 
elastic moduli degeneration: B+ .-(E - nn) = 0. Note that equilibrium TC with new phase layers 
do not exhaust the limit configurations with equilibrium ellipsoidal seeds. 

The least degree of metastability 9 allowing the existence of an equilibrium seed cor- 

responds to stresses for which the quadratic form (o - xE)*.B,..(o --NE) is minimal. in the 
case of isotropic phases this condition has the form 

- (PAJPJ o..w = min (P1 = P+ - cl,) 

For & < 0, a spherical seed is equilibrium in the least metastable single-phase con- 
figuration o = (x13) E. Here 

$ = V,~&~ (1 + 4p&Vc+)) 

If P,>O then the limit configuration o =%nn is correspondingly equilibrium. Here 

9 = %I V/(x+cL+) -+ 0 as jL+ - * 

The corresponding stresses are determined by Eq.cZ.8). 
In conclusion, we note that when using the equality C,-1 = -_B+-.B;i. .B,,itfollowsfrom (2.2), 

(2.11) and (2.12) thatthematerialwithinaseed inahomogeneous fieldof stress U+ hasaiarger 

speCificGibbs,energy density that the initial material in the same field of stresses 

g+ (o*) - g- (c+) s y*-- 'i,m. .B,-'. .rn = 3k,y *(x - 3)/Q>O 

since yJQ < 0,x < 3. 

The authors are grateful to S.K. Kanaun for discussing the results. 
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AGEING VISCOELASTIC BODIES* 

The results in /l, 2/ on the stability of growing viscoelastic rods in 
finite and infinite time intervals are generalized. 

1. Formulation of the problem of the stability of a growing viscoelastic 
body. We consider a body fabricated at a time t = 0 and occupying the domain 61, in three- 
dimensional space. Continuous growth of the body occurs in the time interval [to,t,], where 

t, 20. The law of growth, i.e., the dependence of the body configuration on time, is con- 
sidered to be given. The time of generation of a material particle with coordinates x = 1%) 
(i = 1,2,3) is denoted by r* (x). 

The body is subjected to mass loads F and surface loads g applied to the body boundary 

S, (0, F = {Fi}, q = {gi). Note that the body surface through which growth of the materialoccurs 
is part of the surface S,. On the other part of the body surface S, (t) we are given the dis- 
placements, which to be specific, we set equal to zero. We will later assume that the type of 
boundary conditions does not change during body fabrication. 

Displacements ui (t,x) governing the unperturbed trajectory motion appears in the body 
under the action of external forces. We will henceforth assume the growth of the body to occur 
fairly slowly and the displacements ui to be slowly varying functions of time, whereupon 
inertial effects can be neglected. 

We assume that during the growth of the body its configuration turns out to be different 
from the designed one (for instance, the longitudinal axis of a growing rod actually turns out 
to be curved instead of straight (designed)). This means that the material point coordinates 
(when there are no external loads) are xi + avio instead of xi. We consider Vi0 to be fairly 
small. The parameter a is introduced provisionally, it can be set equal to unity. 

In such a body the displacements will equal ui* = U‘ + c&vi. 
We will call the body motion governed by the displacements ul*perturbed and the displace- 

ments avi the desired perturbations. 
We introduce the displacement norm (V(t) is the body volume at the time t) 

II u(t) II= (A, ui tt7 x, ui (ty x)dV)“’ 

Here and henceforth, summation is over repeated subscripts. 

Definition. The unperturbed motion of a growing viscoelastic body is called stable in an 
infinite time interval if for any number A >0 as small as desired there is a number 6= 

6 (A)>& such that for any initial displacements pviO satisfying the inequality allv'll (6 
and displacements au, correspondingtothis perturbation will satisfy the inequality a(Ivll< 
Afor O,<t<m. 

If the motion of the growing body is investigated in a finite time interval IO, T1 and a 
critical value is given for the displacement norm II v II** then it is possible to speak of a 
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